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Ion saturation currents are widely employed in the diagnostics of plasma of a continu- 
ous medium with the help of electric probes for determining the density of charged particles 
from the I-V curve of the probe [i]. The general expressions obtained in [i] for the satura- 
tion current densities permit deriving concrete diagnostic formulas for different regimes of 
plasma flow. Thus in [2] the ion saturation current on cylindrical and spherical probes in 
flows of incompressible plasma at quite high Reynolds numbers Re, when the flow at the sur- 
face of the probe occurs in the boundary-layer regime, was calculated. In [3] the satura- 
tion current at Re less than unity was determined. 

An important plasma flow regime when performing probe measurements is flow at low Re 
(of the order of unity). This occurs, for example, in the study of ionization of laboratory 
flames with cylindrical and spherical probes with small diameter. In [4] analytical expres- 
sions are presented for the ion saturation current on a cylindrical probe under such condi- 
tions in some model cases of the velocity distribution of the ionized gas. The purpose of 
this work is to determine the saturation current on cylindrical and spherical probes at low 
Re taking into account the real viscous gas flow around the probes, obtained based on the 
solution of the Navier-Stokes equations. 

i. We shall study the flow of an incompressible, thermodynamic equilibrium, weakly 
ionized plasma with constant transport properties and frozen chemical reactions near an in- 
finitely long, conducting, cylindrical body (probe), whose symmetry axis is perpendicular to 
the velocity of the incident flow. According to the theory of [i] the saturation ion current 
is determined from the solution of the equation for the density of charged particles in the 
quasineutral region, which in polar coordinates (r, 8) can be written in the form 
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Here Ree = U ~ R / D I  is the electric Reynolds number; U~ is the velocity of the incident 
flow; R is the radius of the probe; D I is the diffusion coefficient of the ions; Dr and ~8 
are the radial and transverse velocities scaled to U~. The charged particle density is 
scaled to its value at infinity and the radial coordinate r is scaled to the radius of the 
probe. 

The boundary conditions for Eq. (i.i) are 

nl~=~ = o, n l . . ~ ,  - +  t .  (1.2) 

The dimensionless density of the saturation ion current is given by the expression 

Onlr 7=2~- =r (1.3) 

The field of the velocities u r and u 8 is found from the solution of the problem of viscous 
fluid flow around the probe neglecting ionization. 

2. The problem (1.1)-(1.3) was solved numerically. First the distribution of the 
velocities u r and u@ of viscous fluid flow around a circular cylinder was calculated by the 
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method of [5, 6] for solving the Navier~Stokes equations. The calculation of the charged- 
particle density distribution was performed analogously. 

The partial differential equation (i.i) was replaced by a finite-difference equation 
using an explicit five-point scheme. Since the density of charged particles changes most 
rapidly near the surface of the cylinder and since in solving the finite-difference problem 
it is desirable to have near the cylinder a more dense grid than far away from the cylinder 
the transformation z = in r was first made in Eq. (i.i). Then Eq. (I.I) assumes the form 

a2n aZn R% / an . an) 
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The finite-difference approximation of Eq. (2.1) was made using central differences. The 
condition (1.2) at infinity was transferred to a circle with a quite large radius. 

The finite-difference problem was solved by the method of successive approximations. 
The density distribution in the model case of the velocity field of a uniform undisturbed 
flow was taken as the zeroth approximation [4]. A grid with steps along the z and e coor- 
dinates of h = 0.i and d = 6 ~ , respectively, was used in the calculations. The calculations 
were continued until at all points of the grid the modulus of the difference of the computed 
quantities obtained in two successive iterations became less than 10 -4 Then the density 
gradient, which as follows from Eq. (1.3), is proportional to the flow of charged particles 
on the probe, was calculated at each point of the grid lying on the surface of the cylinder. 
The total current on the probe was found by integrating over the contour of the cylinder. 
The calculations were performed on a BESM-6 computer. 

The convergence and stability of the difference scheme employed were checked in test 
calculations on a model problem of flow of an ideal liquid around a cylinder, for which the 
analytical expression for the saturation currents is known [4]. The calculations showed that 
the values of the total saturation currents obtained from the solution of the difference 
problem differ from those determined from the analytical expression [4] with Re e 5 5 by not 
more than 1%. 

The distributions of the velocities u r and u e of viscous fluid flow around the cylinder 
were calculated in the range of gas-dynamic Reynolds numbers from 1 to 15, for which the flow 
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around a cylinder is stationary [7]. A grid consisting of 31 to 36 points in the variable 
z, depending on Re, was employed. Increasing the number of points over the value indicated, 
i.e., locating the outer boundary farther away, has virtually no effect on the computed 
values of the saturation current. 

The electric and gas-dynamic Reynolds numbers, as is well known, are related through 
the Schmidt number Sc by the relation Re e = ReSc (Sc = v/Di, where v is the kinematic coeffi- 
cient of viscosity). Under real conditions Sc is of the order of unity. The saturation 
current was calculated, using the velocity distributions found, for Sc = 0.5, i, and 1.5. 
The number of computed points along the z axis depended on Re e and ranged from 36 at Re e = 1 
up to 12 at Re e = 15. For Re e > i0, owing to the fact that the outer boundary is located 
nearby, the saturation current could be calculated with a step equal to 0.05. The correspond- 
ing values of the velocities at the intermediate nodes of the grid were found by linear in- 
terpolation. Changing the integration step did not significantly affect the saturation cur- 
rent. 

Figure 1 shows the results of calculations of the desnity j of the saturation ion cur- 
rent along the contour of the cylinder. One can see that under the flow conditions studied 
the back surface of the cylinder 0 ! 8 S 90 ~ also makes a significant contribution to the 
integral current. The relative magnitude of this contribution, compared with the front sur- 
face, 90 ~ ~ e < 180 ~ , gradually decreases as Re increases. The increase in the current in 
the range 0 ~ 8 S 35 ~ at Re = 15 is due to the development of a turbulent zone at the back 
surface of the cylinder. 

Figure 2 shows the computed dependences of the dimensionless integral saturation cur- 
rent in on Re e. One can see that the saturation current is virtually independent of Sc. The 
figure also shows, for comparison, the analytical dependences taken from [4] for model cases 
of uniform undistributed flow (broken line) and the velocity distribution of flow of an ideal 
liquid (dot-dash curve) of flow around the cylinder. Taking into account the real flow of 
viscous gas around the cylinder results in a slower increase of the saturation current as Re e 
increases. 

The computed dependences of the dimensionless saturation current on Re e can be approxi- 
mated well by a power-law function 

= aHee  b, (2.2) 

where for Sc = I, a = 0.43, and b = 0.42. 

The relation 

I i = 4 n e N ~ D i L i  ( 2 . 3 )  

(e is the electron charge) relates the dimensional current with the dimensionless current. 

3. The saturation current on a spherical probe was determined analogously to the 
cylindrical case in Sec. 2. The calculation of the velocity field for flow of viscous gas 
around a sphere was performed by the method of [8] for Reynolds numbers 1 < Re 5 65, at 
which the flow around the sphere is stationary [7]. 

The equation for the quasineutral density of charged particles can be written in 
spherical coordinates as follows: 

~r--~ -l- - -  ~r -t- r~ OO~ + t c t g O - ~  - - T  [ur ~-~+ UO r "O0 r"- O. (3.1) 
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After making the transformation z = in r and constructing a finite-difference equation 
the problem can be solved by the method of successive approximations. The starting density 
was chosen as the density in the model case of a uniform undisturbed flow, found from Eq. 
(3.1) with u r = cos0 and u 8 = -sinS: 

oo 
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~n=o Km+ l/2 (• 

172 
( 3 . 2 )  

Here • = Nee/4 ; Im+i/2 and Km+i/~ are Bessel functions of the first and second kind of half- 
integer order and imaginary arguments; and, Pm(cosS) are Legendre polynomials. Two terms were 
retained in the series (3.2) and Re e = I. 

The integral saturation current on the total surface of the sphere in the model case 
indicated is given by the expression 

(3 .3)  

which was employed to monitor the accuracy of the finite-difference calculations. The calcu- 
lations showed that the difference between the saturation current, determined from the solu- 
tion of the finite-difference problem and the formula (3.3), does not exceed 5% at Reynolds 
numbers Re e ~ 40. 

The results of the calculation of the saturation current on a spherical probe in a 
viscous gas flow are presented in Fig. 3 in the form of a curve of the dimensionless current 
i versus Re e. Based on the results presented we have a formula for determining the charged- 
particle density in the incident flow in a dimensional form: 

f l  ~ 8 a e D i N = R  [ i  - k  
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(3.4) 
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4. The formulas obtained were checked experimentally in an investigation of ioniza- 
tion in an acetylene-air flame with alkali additives. The experimental apparatus and the 
measurement procedure are described in [4]. The flame temperature was equal to 2370 • i0 K 
and the flow velocity U~ = 4.4 • 0.5 m/sec. 

Water solutions of sodium, potassium, and rubidium salts with several concentrations 
were introduced into the flame. The concentration n a of free atoms of these metals in the 
flame was determined by the method of the integral absorption coefficient of a spectral line 
[9]. The equilibrium values of the electron density n e in the plasma flame were calculated 
with the help of Saha's equation from the values of the flame temperature and the measured 
value of na: for sodium n e = (2.3-4.1).10 I~ with n a = (1.6-5.4)'i0 Iz cm -3, for potassium 
n e = (0.9-2.0)-i011 cm -3 with n a = (0.9-2.6).1011 cm -3, and for rubidium n e = 1.5'1011 cm -3 
with n a = 6.3'10 I~ cm -3. 

Uncooled cylindrical probes with length L = 9 mm and different diameters as well as 
a spherical probe 2 mm in diameter were used in the experiments. The typical I-V curves 
are presented in Fig. 4, where the electric potential ~ of the probes relative to the refer- 
ence electrode is plotted along the abscissa axis; the body of the burner was used as the 
reference electrode. Curve 1 refers to the spherical probe and curves 2-6 refer to the 
cylindrical probe with diameters 0.75, i, 1.6, 2, and 3 mm, respectively. The character- 
istics presented were obtained in a flame with potassium additive with n a = 9"10 I~ cm -3. 

It follows from the I-V curves of the spherical [i0] and flat [i] probes in a station- 
ary plasma that the start of the saturation ion current is realized with a dimensionless 
electric potential Xp = e~pfkTe~'10, where ~p is the potential of the probe relative 
to the potential of the plasma, k is Boltzmann's constant, and T e is the electron tempera- 
ture. The measurements showed that the potential of the plama flame was equal to ~0.5 V. 
According to what was said above, the current with ~ = -2 V was taken as the saturation ion 
current corresponding to the computed current given by Eq. (2.3) and Eq. (3.4). 

In determining the charged-particle density from the formulas (2.3) and (3.4) the dif- 
fusion coefficient of sodium ions D i = 5.2 cm2/sec was employed [ii]. Based on the data of 
[12] we obtained D i = 4.8 cm2/sec for potassium ions and D i = 4.6 cm2/sec for rubidium ions. 

The experimental results obtained with the cylindrical probes are presented in Fig. 5. 
The charged-particle density calculated from Saha's equation based on spectral measurements 
was used to determine the dimensionless current i. The experimental points for each alkali 
element are described well by the power-law dependence (2.2) with the least-square values of 
the constants (a = 1.51 and b = 0.41 for sodium, a = 1.34 and b = 0.29 for potassium, and 
a = 0.78 and b = 0.37 for rubidium). Thus in the case of sodium and rubidium additives the 
exponent b is close to the computed value, but for all three elements the experimentally 
determined saturation current is somewhat higher than the theoretical value: on the average 
by a factor of 3.5 for sodium, a factor of 2.4 for potassium, and a factor of 1.5 for rubid- 
ium, i.e., the values of the charged-particle densities determined from the formula (2.3) 
are correspondingly greater by the factor indicated than the values computed based on the 
spectral measurements. 

The measurements performed by the spherical probe gave analogous results. The den- 
sities found with the help of the formula (3.4) were 2.5 times greater for sodium, 1.8 times 
greater for potassium, and 1.2 times greater for rubidium than the values computed from the 
spectral measurements. The somewhat better agreement is explained by the smaller effective 
sorbing surface of the probe owing to the effect of the holder, which prevents charged parti- 
cles from reaching part of the side surface of the sphere. 

Thus the experimental results presented indicate that the expressions (2.3) and (3.4) 
obtained in this work describe quite satisfactorily the relation between the ion saturation 
current on the probe and the charged-particle density in the plasma of the flame. The ob- 
served discrepancies between the values of the density determined from probe measurements 
based on the formulas (2.3) and (3.4) and based on spectral measurements are evidently ex- 
plained by the fact that the theoretical model used to calculate the saturation current 
neglects some processes occurring in the plasma, for example, formation of negative ions on 
the surface of the probe that is colder than the surrounding medium [13]. 
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